Extensions 1→N→G→Q→1 with N=C42 and Q=Dic3

Direct product G=N×Q with N=C42 and Q=Dic3
dρLabelID
Dic3×C42192Dic3xC4^2192,489

Semidirect products G=N:Q with N=C42 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C42⋊Dic3 = C42⋊Dic3φ: Dic3/C1Dic3 ⊆ Aut C421612+C4^2:Dic3192,185
C422Dic3 = C23.9S4φ: Dic3/C2S3 ⊆ Aut C42123C4^2:2Dic3192,182
C423Dic3 = C423Dic3φ: Dic3/C3C4 ⊆ Aut C42484C4^2:3Dic3192,90
C424Dic3 = C424Dic3φ: Dic3/C3C4 ⊆ Aut C42484C4^2:4Dic3192,100
C425Dic3 = C425Dic3φ: Dic3/C3C4 ⊆ Aut C42244C4^2:5Dic3192,104
C426Dic3 = C426Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:6Dic3192,491
C427Dic3 = C427Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:7Dic3192,496
C428Dic3 = C12.8C42φ: Dic3/C6C2 ⊆ Aut C4248C4^2:8Dic3192,82
C429Dic3 = C4×C4⋊Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:9Dic3192,493
C4210Dic3 = C4210Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:10Dic3192,494
C4211Dic3 = C4211Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:11Dic3192,495

Non-split extensions G=N.Q with N=C42 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C42.1Dic3 = C12.15C42φ: Dic3/C3C4 ⊆ Aut C42484C4^2.1Dic3192,25
C42.2Dic3 = C42.Dic3φ: Dic3/C3C4 ⊆ Aut C42484C4^2.2Dic3192,101
C42.3Dic3 = C42.3Dic3φ: Dic3/C3C4 ⊆ Aut C42484C4^2.3Dic3192,107
C42.4Dic3 = C24.C8φ: Dic3/C6C2 ⊆ Aut C42192C4^2.4Dic3192,20
C42.5Dic3 = C2×C42.S3φ: Dic3/C6C2 ⊆ Aut C42192C4^2.5Dic3192,480
C42.6Dic3 = C42.285D6φ: Dic3/C6C2 ⊆ Aut C4296C4^2.6Dic3192,484
C42.7Dic3 = C42.270D6φ: Dic3/C6C2 ⊆ Aut C4296C4^2.7Dic3192,485
C42.8Dic3 = C12⋊C16φ: Dic3/C6C2 ⊆ Aut C42192C4^2.8Dic3192,21
C42.9Dic3 = C24.1C8φ: Dic3/C6C2 ⊆ Aut C42482C4^2.9Dic3192,22
C42.10Dic3 = C4×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C4296C4^2.10Dic3192,481
C42.11Dic3 = C2×C12⋊C8φ: Dic3/C6C2 ⊆ Aut C42192C4^2.11Dic3192,482
C42.12Dic3 = C127M4(2)φ: Dic3/C6C2 ⊆ Aut C4296C4^2.12Dic3192,483
C42.13Dic3 = C4×C3⋊C16central extension (φ=1)192C4^2.13Dic3192,19
C42.14Dic3 = C2×C4×C3⋊C8central extension (φ=1)192C4^2.14Dic3192,479

׿
×
𝔽