extension | φ:Q→Aut N | d | ρ | Label | ID |
C42⋊Dic3 = C42⋊Dic3 | φ: Dic3/C1 → Dic3 ⊆ Aut C42 | 16 | 12+ | C4^2:Dic3 | 192,185 |
C42⋊2Dic3 = C23.9S4 | φ: Dic3/C2 → S3 ⊆ Aut C42 | 12 | 3 | C4^2:2Dic3 | 192,182 |
C42⋊3Dic3 = C42⋊3Dic3 | φ: Dic3/C3 → C4 ⊆ Aut C42 | 48 | 4 | C4^2:3Dic3 | 192,90 |
C42⋊4Dic3 = C42⋊4Dic3 | φ: Dic3/C3 → C4 ⊆ Aut C42 | 48 | 4 | C4^2:4Dic3 | 192,100 |
C42⋊5Dic3 = C42⋊5Dic3 | φ: Dic3/C3 → C4 ⊆ Aut C42 | 24 | 4 | C4^2:5Dic3 | 192,104 |
C42⋊6Dic3 = C42⋊6Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 192 | | C4^2:6Dic3 | 192,491 |
C42⋊7Dic3 = C42⋊7Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 192 | | C4^2:7Dic3 | 192,496 |
C42⋊8Dic3 = C12.8C42 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 48 | | C4^2:8Dic3 | 192,82 |
C42⋊9Dic3 = C4×C4⋊Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 192 | | C4^2:9Dic3 | 192,493 |
C42⋊10Dic3 = C42⋊10Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 192 | | C4^2:10Dic3 | 192,494 |
C42⋊11Dic3 = C42⋊11Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 192 | | C4^2:11Dic3 | 192,495 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C42.1Dic3 = C12.15C42 | φ: Dic3/C3 → C4 ⊆ Aut C42 | 48 | 4 | C4^2.1Dic3 | 192,25 |
C42.2Dic3 = C42.Dic3 | φ: Dic3/C3 → C4 ⊆ Aut C42 | 48 | 4 | C4^2.2Dic3 | 192,101 |
C42.3Dic3 = C42.3Dic3 | φ: Dic3/C3 → C4 ⊆ Aut C42 | 48 | 4 | C4^2.3Dic3 | 192,107 |
C42.4Dic3 = C24.C8 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.4Dic3 | 192,20 |
C42.5Dic3 = C2×C42.S3 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.5Dic3 | 192,480 |
C42.6Dic3 = C42.285D6 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.6Dic3 | 192,484 |
C42.7Dic3 = C42.270D6 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.7Dic3 | 192,485 |
C42.8Dic3 = C12⋊C16 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.8Dic3 | 192,21 |
C42.9Dic3 = C24.1C8 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 48 | 2 | C4^2.9Dic3 | 192,22 |
C42.10Dic3 = C4×C4.Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.10Dic3 | 192,481 |
C42.11Dic3 = C2×C12⋊C8 | φ: Dic3/C6 → C2 ⊆ Aut C42 | 192 | | C4^2.11Dic3 | 192,482 |
C42.12Dic3 = C12⋊7M4(2) | φ: Dic3/C6 → C2 ⊆ Aut C42 | 96 | | C4^2.12Dic3 | 192,483 |
C42.13Dic3 = C4×C3⋊C16 | central extension (φ=1) | 192 | | C4^2.13Dic3 | 192,19 |
C42.14Dic3 = C2×C4×C3⋊C8 | central extension (φ=1) | 192 | | C4^2.14Dic3 | 192,479 |