Extensions 1→N→G→Q→1 with N=C42 and Q=Dic3

Direct product G=NxQ with N=C42 and Q=Dic3
dρLabelID
Dic3xC42192Dic3xC4^2192,489

Semidirect products G=N:Q with N=C42 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C42:Dic3 = C42:Dic3φ: Dic3/C1Dic3 ⊆ Aut C421612+C4^2:Dic3192,185
C42:2Dic3 = C23.9S4φ: Dic3/C2S3 ⊆ Aut C42123C4^2:2Dic3192,182
C42:3Dic3 = C42:3Dic3φ: Dic3/C3C4 ⊆ Aut C42484C4^2:3Dic3192,90
C42:4Dic3 = C42:4Dic3φ: Dic3/C3C4 ⊆ Aut C42484C4^2:4Dic3192,100
C42:5Dic3 = C42:5Dic3φ: Dic3/C3C4 ⊆ Aut C42244C4^2:5Dic3192,104
C42:6Dic3 = C42:6Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:6Dic3192,491
C42:7Dic3 = C42:7Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:7Dic3192,496
C42:8Dic3 = C12.8C42φ: Dic3/C6C2 ⊆ Aut C4248C4^2:8Dic3192,82
C42:9Dic3 = C4xC4:Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:9Dic3192,493
C42:10Dic3 = C42:10Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:10Dic3192,494
C42:11Dic3 = C42:11Dic3φ: Dic3/C6C2 ⊆ Aut C42192C4^2:11Dic3192,495

Non-split extensions G=N.Q with N=C42 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C42.1Dic3 = C12.15C42φ: Dic3/C3C4 ⊆ Aut C42484C4^2.1Dic3192,25
C42.2Dic3 = C42.Dic3φ: Dic3/C3C4 ⊆ Aut C42484C4^2.2Dic3192,101
C42.3Dic3 = C42.3Dic3φ: Dic3/C3C4 ⊆ Aut C42484C4^2.3Dic3192,107
C42.4Dic3 = C24.C8φ: Dic3/C6C2 ⊆ Aut C42192C4^2.4Dic3192,20
C42.5Dic3 = C2xC42.S3φ: Dic3/C6C2 ⊆ Aut C42192C4^2.5Dic3192,480
C42.6Dic3 = C42.285D6φ: Dic3/C6C2 ⊆ Aut C4296C4^2.6Dic3192,484
C42.7Dic3 = C42.270D6φ: Dic3/C6C2 ⊆ Aut C4296C4^2.7Dic3192,485
C42.8Dic3 = C12:C16φ: Dic3/C6C2 ⊆ Aut C42192C4^2.8Dic3192,21
C42.9Dic3 = C24.1C8φ: Dic3/C6C2 ⊆ Aut C42482C4^2.9Dic3192,22
C42.10Dic3 = C4xC4.Dic3φ: Dic3/C6C2 ⊆ Aut C4296C4^2.10Dic3192,481
C42.11Dic3 = C2xC12:C8φ: Dic3/C6C2 ⊆ Aut C42192C4^2.11Dic3192,482
C42.12Dic3 = C12:7M4(2)φ: Dic3/C6C2 ⊆ Aut C4296C4^2.12Dic3192,483
C42.13Dic3 = C4xC3:C16central extension (φ=1)192C4^2.13Dic3192,19
C42.14Dic3 = C2xC4xC3:C8central extension (φ=1)192C4^2.14Dic3192,479

׿
x
:
Z
F
o
wr
Q
<